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A b s t r a c t 

While there is currently a  lot  of  enthusiasm  about  “big  data”,  useful  data  is  usually  “small” and expensive to acquire. In this paper, we 
present a new paradigm  of  learning partial differential equations from small data. In particular, we introduce hidden physics models, which are 
essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear 
partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be 
applied  to  the  problem  of  learning,  system  identification, or data-driven discovery of partial differential equations. Our framework relies on 
Gaussian processes, a powerful tool for probabilistic inference over functions,  that  enables  us  to strike a balance between model complexity 
and data fitting. The effectiveness  of  the proposed  approach  is  demonstrated  through  a  variety  of  canonical  problems,  spanning a number 
of scientific domains, including the Navier–Stokes, Schrödinger, Kuramoto– Sivashinsky, and  time  dependent  linear  fractional  equations.  The  
methodology  provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics 
and mathematical physics  to  design  learning  machines with the ability to operate in complex domains without requiring large quantities of 
data. 

 
 

 

 

 

1. Introduction 

 
There are more than a trillion sensors in the world today and according to some estimates there will be about 50 tril- 

lion cameras worldwide within the next five years, all collecting data either sporadically or around the clock. However, in 

scientific experiments, quality and error-free data is not easy to obtain – e.g., for system dynamics characterized by bifur- 

cations and instabilities, hysteresis, and often irreversible responses. Admittedly, as in all everyday applications, in scientific 

experiments too, the volume of data has increased substantially compared to even a decade ago but analyzing big data is 

expensive and time-consuming. Data-driven methods, which have been enabled in the past decade by the availability of 

sensors, data storage, and computational resources, are taking center stage across many disciplines of science. We now have 

highly scalable solutions for problems in object detection and recognition, machine translation, text-to-speech conversion, 

recommender systems, and information retrieval. All of these solutions attain state-of-the-art performance when trained 

with large amounts of data. However, purely data driven approaches for machine learning present difficulties when the data 

is scarce relative to the complexity of the system. Hence, the ability to learn in a sample-efficient manner is a necessity in 

 
*  

these data-limited domains. Less well understood is how to leverage the underlying physical laws and/or governing equa- 

tions to extract patterns from small data generated from highly complex systems. In this work, we propose a modeling 

framework that enables blending conservation laws, physical principles, and/or phenomenological behaviors expressed by 

partial differential equations with the datasets available in many fields of engineering, science, and technology. This paper 

should be considered a direct continuation of a preceding one [1] in which we addressed the problem of inferring solutions 

of time dependent and nonlinear partial differential equations using noisy observations. Here, a similar methodology is em- 

ployed to deal with the problem of learning, system identification, or data-driven discovery of partial differential equations 

[2]. The literature on data-driven discovery of dynamical systems [3] is vast and encompasses equation-free modeling [4], 

artificial neural networks [5], nonlinear regression [6], empirical dynamic modeling [7,8], modeling emergent behavior [9], 

automated inference of dynamics [10–12], normal form identification in climate [13], nonlinear Laplacian spectral analysis 

[14], modeling emergent behavior [9], Koopman analysis [15–18], automated inference of dynamics [10–12], and symbolic 

regression [19,20]. More recently, sparsity [21] has been used to determine the governing dynamical system [22–31]. In 

general, we envision that the proposed method of the current work could be most useful in cases where one would like to 

learn from noisy experimental data and a governing equation is known. Take for example the case of reconstructing a flow 

field from scattered measurements (e.g., Particle Image Velocimetry data), and using the governing Navier–Stokes equations 

to extract patterns from such measurements. 

 
2. Problem setup 

 
Let us consider parametrized and nonlinear partial differential equations of the general form 
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ht + Nλh = 0, x ∈ ▲, t ∈ [0, T ], (1) 

where h(t, x) denotes the latent (hidden) solution,    λ  is a nonlinear operator parametrized by λ, and ▲ is a subset of RD . 

As an example, the one dimensional Burgers’ equation corresponds to the case where    λh    λ1hhx    λ2hxx  and λ    (λ1, λ2). 

Here, the subscripts denote partial differentiation in either time or space. Given noisy measurements of the system, one is 

typically interested in the solution of two distinct problems. The first problem is that of inference or filtering and smoothing, 

which states: given fixed model parameters λ what can be said about the unknown hidden state h(t, x) of the system? This 

question  is  the  topic  of  a  preceding  paper  [1]  of  the  authors  in  which  we  introduce  the  concept  of  numerical Gaussian 

processes and address the problem of inferring solutions of time dependent and nonlinear partial differential equations 

using noisy observations. The second problem is that of learning, system identification, or data driven discovery of partial 

differential equations [2] stating: what are the parameters λ that best describe the observed data? Here we assume that 

all  we  observe  are  two  snapshots    xn−1, hn−1      and    xn, hn    of  the  system  at  times  tn−1   and  tn,  respectively,  which  are 

∆t  tn    tn−1   apart.  The  main  assumption  is  that  ∆t  is  small  enough  so  that  we  can  apply  the  backward  Euler  time 

stepping scheme1 to equation (1) and obtain the discretized equation 

hn  + ∆tNλhn  = hn−1. (2) 

Here, hn(x)  h(tn, x) is  the  hidden  state  of  the  system  at  time  tn .  Approximating  the  nonlinear  operator  on  the  left-hand- 

side of equation (2) by a linear one we obtain 

Lλhn = hn−1. (3) 

For instance, the nonlinear operator 

hn + ∆tNλhn = hn + ∆t(λ1hnhn − λ2hn ), 

involved in the Burgers’ equation can be approximated by the linear operator 

Lλhn = hn + ∆t(λ1hn−1hn − λ2hn ), 

where hn−1(x) is the state of the system at the previous time tn−1 . 

 
3. The basic model 

 
Similar to Raissi et al. [32,33], we build upon the analytical property of Gaussian processes that the output of a linear 

system whose input is Gaussian distributed is again Gaussian. Specifically, we proceed by placing a Gaussian process2 prior 

over the latent function hn(x); i.e., 

 
1  For a general treatment of arbitrary linear multi-step methods as well as Runge–Kutta time stepping schemes we would like to refer the readers to [1]. 
2 Gaussian processes (see [34,35]) provide a flexible prior distribution over functions and enjoy analytical tractability. They can be viewed as a prior on one-

layer feed-forward Bayesian neural networks with an infinite number of hidden units [36]. Gaussian processes are among a class of methods known as kernel 

machines (see [37–39]) and are analogous to regularization approaches (see [40–42]). 
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hn(x) ∼ GP(0, k(x, xr, θ )). (4) 

Here, θ denotes the hyper-parameters of the covariance  function k.  Without  loss  of  generality,  all  Gaussian  process  priors 

used in this work are assumed to have a squared exponential3  covariance function, i.e., 

k(x, xr; θ) = γ 2 exp 

 

− 
1  

 

w2(xd − xr )2    , 

2  d d 

d=1 

where θ = (γ , w1, ··· , w D ) are the hyper-parameters and x is a D-dimensional vector. The Gaussian process prior assump- 
tion (4) along with equation (3) enable us to capture the entire structure of the operator Lλ in the resulting multi-output 

Gaussian process 

    
hn     

   

∼

  

0  

      
kn,n kn,n−1  

(5) 
 

It is  worth  highlighting  that  the  parameters  λ of  the  operators  Lλ  and  Nλ   turn  into  hyper-parameters  of  the  resulting 
x x 

covariance functions. The specific forms of the kernels4 

kn,n(x, xr; θ), kn,n−1(x, xr; θ, λ), 

kn−1,n(x, xr; θ, λ), kn−1,n−1(x, xr; θ, λ), 

are direct functions of equation (3) as well as the prior assumption (4); i.e., 

kn,n = k, kn,n−1 = Lλ k, 

kn−1,n = Lλk, kn−1,n−1 = LλLλ k. 

We call the multi-output Gaussian process (5) a hidden physics model, because its matrix of covariance  functions  explicitly 

encodes the underlying laws of physics expressed by equations (1) and (3). 

 
4. Learning 

 

Given the noisy data {xn−1, hn−1} and {xn, hn} on the latent solution at times tn−1 and tn, respectively, the hyper- 
parameters θ of the covariance functions and more importantly the parameters λ of the operators Lλ and Nλ  can be 

learned by employing a Quasi-Newton optimizer L-BFGS [51] to minimize the negative log marginal likelihood [34] 

— log p(h|θ, λ, σ 2) = 
1 

hT K −1h + 
1 

log |K |+ 
N 

log(2π), (6) 
   

    
hn 

2 2 2 
 

2 

 

kn,n(xn, xn) kn,n−1(xn, xn−1) 

kn−1,n(xn−1, xn)    kn−1,n−1(xn−1, xn−1) 

  

+ σ 2 I . 

Here, N is the total number of data points  in  h.  Moreover,  σ 2  is  included  to  capture  the  noise  in  the  data  and  is  also 
learned by minimizing the negative log marginal likelihood. The implicit underlying assumption is that hn   hn(xn)   ‹n and 

hn−1        hn−1(xn−1)     ‹n−1 with  ‹n          (0, σ 2 I) and  ‹n−1          (0, σ 2 I) being independent. The negative log marginal likeli- 
hood (6) does not simply favor the models that fit the training data best. In fact, it induces an automatic trade-off between 

data-fit and model complexity. Specifically, minimizing the term hT K −1h in equation (6) targets fitting the training data, 

while the log-determinant term log K  penalizes model complexity. This regularization mechanism automatically meets the 

Occam’s razor  principle  [52]  which  encourages  simplicity  in  explanations.  The  aforementioned  regularization  mechanism 

of the negative log marginal likelihood (6) effectively guards against overfitting and enables learning the unknown model 

parameters  from  very  few5  noisy  observations.  However,  there  is  no  theoretical  guarantee  that  the  negative  log  marginal 

 
3 From a theoretical point of view, each kernel (i.e., covariance function) gives rise to a Reproducing Kernel Hilbert Space (RKHS) [43–45] that defines a 

class of functions that can be represented by this kernel. In particular, the squared exponential covariance function implies smooth approximations. For a 

more systematic treatment of the kernel-selection problem we would like to refer the readers to [46–48]. Furthermore, more complex function classes can 

be accommodated by employing nonlinear warping of the input space to capture discontinuities [49,50]. 
4  It  should  be  noted  that  for  all  examples  studied  in  this  work  the  kernels  are  generated  at  the  push  of  a  button  using  Wolfram  Mathematica,  a 

mathematical symbolic computation program. 
5 Regularization is important even in data abundant regimes as witnessed by the recently growing literature on discovering ordinary and partial differ- 

ential equations from data using sparse regression techniques [22,2]. 

D 

 

K = 

GP . 

where h = hn−1 ,  p(h|θ, λ, σ ) = N (0, K ), and  K  is given by 



IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 30th June, 2019 

278 

 

= 

{ } 

= 

 

 
 

Fig. 1. Burgers’ equation: A solution to the Burgers’ equation is depicted in the top panel. The two white vertical lines in this panel specify the locations of 

the two randomly selected snapshots. These two snapshots are ∆t 0.1 apart and are plotted in the middle panel. The red crosses denote the locations of 

the training data points. The correct partial differential equation along with the identified ones are reported in the lower panel. (For interpretation of the  

references to color in this figure, the reader is referred to the web version of this article.) 

 
likelihood does not suffer from multiple local minima. Our practical experience so far with the negative log marginal likeli- 

hood seems to indicate that local minima are not a devastating problem, but certainly they do exist. Moreover, it should be 

highlighted that, although not pursued here, a fully Bayesian [53] and more robust estimate of the linear operator parame- 

ters λ can be obtained by assigning priors on θ, λ, σ 2 . However, this would require more costly sampling procedures such 

as Markov Chain Monte Carlo (see [34], chapter 5) to train the model. Furthermore, the most computationally intensive part 

of learning using the negative log marginal likelihood (6)  is  associated  with  inverting  dense  covariance  matrices  K .  This 

scales cubically with the number N of training data in h. While it has been effectively addressed by the recent works of [54–

56], this cubic scaling is still a well-known limitation of Gaussian process regression. 

 
5. Results 

 
The proposed framework provides a general treatment of time-dependent  and  nonlinear  partial  differential  equations, 

which can be of fundamentally different nature. This generality will be demonstrated by applying the algorithm to a dataset 

originally proposed in [2], where sparse regression techniques are used to discover partial differential equations from time 

series measurements in the spatial domain. This dataset covers a wide range of canonical problems spanning a number of 

scientific domains including the Navier–Stokes, Schrödinger, and Kuramoto–Sivashinsky  equations.  Moreover,  all  data  and 

codes used in this manuscript are publicly available on GitHub at https://github.com/maziarraissi/HPM. 

 
 Burgers’ equation 

 
Burgers’ equation arises in various areas of applied mathematics, including fluid mechanics, nonlinear  acoustics,  gas 

dynamics, and traffic flow [57]. It is a fundamental partial differential equation and can be derived from the Navier–Stokes 

equations for the velocity field by dropping the pressure gradient term. Burgers’ equation, despite its relation to the much 

more complicated Navier–Stokes equations, does not exhibit turbulent behavior. However, for small values of the viscosity 

parameters, Burgers’ equation can lead to shock formation that is notoriously hard to resolve by classical numerical methods. 

In one space dimension the equation reads as 

ut  + λ1uux − λ2uxx = 0, (7) 

with (λ1, λ2) being the unknown parameters. The original data-set proposed in [2] contains 101 time snapshots of a solution 

to the Burgers’ equation with  a  Gaussian  initial  condition,  propagating  into  a  traveling  wave.  The  snapshots  are  ∆t  0.1 

apart.  The  spatial  discretization  of  each  snapshot  involves  a  uniform  grid  with  256  cells.  As  depicted  in  Fig.  1  using  only 

https://github.com/maziarraissi/HPM
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Table 1 

Burgers’ equation: Resulting statistics for the learned parameter values. 
 

 Clean data   1% noise   5% noise   

λ1 λ2  λ1 λ2  λ1 λ2 

First quartile 1.0247 0.0942  0.9168 0.0784  0.3135 0.0027  

Median 1.0379 0.0976  1.0274 0.0919  0.8294 0.0981  

Third quartile 1.0555 0.0987  1.1161 0.1166  1.2488 0.1543  

 
 

Table 2 

Burgers’ equation: Effect of increasing the gap ∆t between the pair of snapshots. 
 

∆t = 0.1 ∆t = 0.5 ∆t = 1.0 ∆t = 1.5 

Clean data λ1 1.0283 1.1438 1.2500 1.2960 

 λ2 0.1009 0.0934 0.0694 0.0431 

1% noise λ1 1.0170 1.1470 1.2584 1.3063 

 λ2 0.0935 0.0939 0.0711 0.0428 

 

two of these snapshots (randomly selected) with 71 and 69  data  points,6  respectively,  the  algorithm  is  capable  of  identifying 

the  correct  parameter  values  up  to  a  relatively  good  accuracy.  It  should  be  noted  that  we  are  using  only  140    71    69 

data points out of a total of 25856    101     256 in the original data set. This surprising performance is achieved at the cost 

of explicitly encoding the underlying physical laws expressed by the  Burgers’  equation  in  the  covariance  functions  of  the 

hidden physics model (5).  For  a  systematic  study  of  the  performance  of  the  method,  let  us  carry  out  the  same  experiment 

as the one illustrated in Fig. 1 for every pair of consecutive snapshots in the original dataset. We are still using the same 

number of data points (i.e., 71  and  69)  for  each  pair  of  snapshots,  albeit  in  different  locations.  The  resulting  statistics  for 

the learned parameter values are reported in Table 1. As is clearly demonstrated in this table, more noise in the data leads 

to less confidence in the estimated values for the parameters. Moreover, let us recall the main assumption of this work that 

the gap  ∆t  between the pair of snapshots should be small enough so that we can employ the backward Euler scheme (see 

equation (2)). To test  the  importance  of  this  assumption,  let  us  use  the  exact  same  setup  as  the  one  explained  in  Fig.  1, 

but increase ∆t. The  reported  results  in  Table  2  indicate  that  increasing  the  gap  ∆t  between  the  pair  of  snapshots  results 

in less accurate estimates for the parameters. Therefore, the most important facts about the proposed methodology are that 

more data, less noise, and a smaller gap ∆t between the two snapshots enhance the performance of the algorithm. 

 
 The KdV equation 

 
As a mathematical model of waves  on  shallow  water  surfaces  one  could  consider  the  Korteweg–de  Vries  (KdV)  equa- 

tion. This equation can also be viewed as Burgers’ equation with an added dispersive term. The KdV equation has several 

connections to physical problems. It describes the evolution of long one-dimensional waves in many physical settings. Such 

physical settings include shallow-water waves with weakly non-linear restoring forces, long internal waves  in  a  density- 

stratified ocean, ion acoustic waves in a plasma, and acoustic waves on a crystal lattice. Moreover, the KdV equation is the 

governing equation of the string in the Fermi–Pasta–Ulam problem [58] in the continuum limit. The KdV equation reads as 

ut  + λ1uux + λ2uxxx  = 0, (8) 

with (λ1, λ2) being the  unknown  parameters.  The  original  dataset  proposed  in  [2]  contains  a  two  soliton  solution  to  the 

KdV  equation  with  512  spatial  points  and  201  time-steps.  The  snapshots  are  ∆t   0.1  apart.  As  depicted  in  Fig.  2  using 

only two of these snapshots (randomly selected) with 111 and 109 data points, respectively, the algorithm is capable  of 

identifying the correct parameter values up to a relatively good accuracy. In particular, we are using 220     111     109 out 

of a total of 102912  201  512  data  points  in  the  original  data  set.  This  level  of  efficiency  is  a  direct  consequence  of 

equation (5) where the covariance functions explicitly encode the underlying physical laws expressed by the KdV equation. 

As a sensitivity analysis of the reported results, let us perform the same experiment as the one illustrated in Fig. 2 for every 

pair of consecutive snapshots in the original dataset. We are still using the same number of data points (i.e., 111 and 109) 

for each pair of snapshots, albeit in different locations. The resulting statistics for the learned parameter values are reported 

in Table 3. As is clearly demonstrated in this table, more noise in the data leads to less confidence in the estimated values 

for the parameters. Moreover, to test the sensitivity of the results with respect to the gap between the two time snapshots, 

let us use the exact same setup as the one explained in Fig. 2, but increase ∆t. The results are reported in Table 4. These 

results verify the most important facts about the proposed methodology that more data, less noise,  and  a  smaller  gap  ∆t 

between the two snapshots enhance the performance of the algorithm. 

 
6 For the examples provided, the number of data points used per snapshot is less  than  the  full  spatial  grid.  For  instance,  in  the  Burgers’  equation  

example 71 and 69 data points are used out of the full 256 grid size. The data points are sub-sampled from the full grid at random according to a uniform 

distribution. 
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Fig. 2. The KdV equation: A solution to the KdV equation is depicted in the top panel. The two white vertical lines in this panel specify the locations of the 

two randomly selected snapshots. These two snapshots are ∆t 0.1 apart and are plotted in the middle panel. The red crosses denote the locations of 

the training data points. The correct partial differential equation along with the identified ones are reported in the lower p anel. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 

 
Table 3 

The KdV equation: Resulting statistics for the learned parameter values. 
 

 Clean data   1% noise   5% noise   

λ1 λ2  λ1 λ2  λ1 λ2 

First quartile 5.7783 0.9299  5.3358 0.7885  3.7435 0.2280  

Median 5.8920 0.9656  5.5757 0.8777  4.5911 0.6060  

Third quartile 6.0358 1.0083  5.7840 0.9491  5.5106 0.8407  

 

Table 4 

The KdV equation: Effect of increasing the gap ∆t between the pair of snapshots. 
 

∆t = 0.1 ∆t = 0.2 ∆t = 0.3 ∆t = 0.4 ∆t = 0.5 

Clean data λ1 6.1145 5.8948 5.4014 4.1779 3.5058 

 λ2 1.0470 0.9943 0.8535 0.4475 0.1816 

1% noise λ1 5.7224 5.8288 5.4054 4.1479 3.4747 

 λ2 0.9578 0.9801 0.8563 0.4351 0.1622 

 

 Kuramoto–Sivashinsky equation 

 
The Kuramoto–Sivashinsky equation  [59–61]  has  similarities  with  Burgers’  equation.  However,  because  of  the  presence 

of both second and fourth order spatial derivatives, its behavior is far more complicated and interesting. The Kuramoto– 

Sivashinsky is a canonical model of a pattern forming system with spatio-temporal chaotic behavior. The sign of the second 

derivative term is such that it acts as an energy source and thus has a destabilizing  effect.  The  nonlinear  term,  however, 

transfers energy from low to high wave numbers where the stabilizing fourth derivative term dominates. The first derivation 

of this equation was by Kuramoto in the  study  of  reaction–diffusion equations  modeling  the  Belousov–Zabotinskii  reaction. 

The equation was also developed by Sivashinsky in higher space dimensions in modeling small thermal diffusive instabilities 

in laminar flame fronts and in small perturbations from a reference Poiseuille flow of a film layer on an inclined plane. In 

one space dimension it has also been  used  as  a  model  for  the  problem  of  Bénard  convection  in  an  elongated  box,  and  it 

may be used to describe long  waves  on  the  interface  between  two  viscous  fluids  and  unstable  drift  waves  in  plasmas.  In 

one space dimension the Kuramoto–Sivashinsky equation reads as 

ut  + λ1uux  + λ2uxx  + λ3uxxxx  = 0, (9) 
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Fig. 3. Kuramoto–Sivashinsky equation: A solution to the Kuramoto–Sivashinsky equation is depicted in the top panel. The two white vertical lines in this 

panel specify the locations of the two randomly selected snapshots. These two snapshots are ∆t     0.4 apart and are plotted in the middle panel. The red 

crosses denote the locations of the training data points. The correct partial differential equation along with the identified ones are reported in the lower 

panel. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

Table 5 

Kuramoto–Sivashinsky equation: Resulting statistics for the learned parameter values. 

 
 
 

0.4758 0.4086 

Third quartile 1.0187 1.0550 1.0314 0.9565 0.9948 0.9553 0.6991 0.7644 0.7009 

 
where  (λ1, λ2, λ3)  are  the  unknown  parameters.  The  original  dataset  proposed  in  [2]  contains  a  direct  numerical  solution 

of  the  Kuramoto–Sivashinsky  equation  with  1024  spatial  points  and  251  time-steps.  The  snapshots  are  ∆t     0.4  apart. 

As depicted in  Fig.  3  using  only  two  of  these  snapshots  (randomly  selected)  with  301  and  299  data  points,  respectively, 

the algorithm is capable  of  identifying  the  correct  parameter  values  up  to  a  relatively  good  accuracy.  In  particular,  we 

are  using  600   301    299  out  of  a  total  of  257024    251    1024  data  points  in  the  original  data  set.  This  is  possible 

because of equation (5) where the covariance functions explicitly encode the underlying physical laws expressed by the 

Kuramoto–Sivashinsky equation. For a sensitivity analysis of the reported results, let us perform the same experiment as the 

one illustrated in Fig. 3 for every pair of consecutive snapshots in the original dataset. We are still using the same number 

of data points (i.e., 301 and 299) for each pair of  snapshots,  albeit  in  different  locations.  The  resulting  statistics  for  the 

learned parameter values are reported in Table 5. As shown in this table, more noise in the data leads to less confidence 

in the estimated parameter values. Moreover, to test the sensitivity of the results with respect to the gap between the two 

time snapshots,  let  us  use  the  exact  same  setup  as  the  one  explained  in  Fig.  3,  but  increase  ∆t.  The  results  are  reported 

in Table 6. These results indicate that more data, less noise, and a smaller gap ∆t between the two snapshots enhance the 

performance of the algorithm. 

 
 Nonlinear Schrödinger equation 

 
The one-dimensional nonlinear Schrödinger equation is a classical field equation that is used to study nonlinear wave 

propagation in optical fibers and/or waveguides, Bose–Einstein condensates, and plasma waves. In optics, the nonlinear term 

arises from the intensity dependent index of refraction of a given material. Similarly, the nonlinear term for Bose–Einstein 

condensates is a result of the mean-field interactions of an interacting, N-body system. The nonlinear Schrödinger equation 

is given by 

iht  + λ1hxx + λ2|h|2h = 0, (10) 

 Clean data    1% noise    5% noise  

λ1 λ2 λ3  λ1 λ2 λ3  λ1 λ2 λ3  

First quartile 

Median 

0.9603 
0.9885 

0.9829 
1.0157 

0.9711 
0.9970 

 0.7871 
0.8746 

0.8095 
0.9124 

0.5891 
0.8798 

 −0.0768 0.0834 
0.5539 

−0.0887 
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Table 6 

Kuramoto–Sivashinsky equation: Effect of increasing the gap ∆t between the pair of snapshots. 
 

∆t = 0.4 ∆t = 0.8 ∆t = 1.2 

Clean data λ1 0.9515 0.5299 0.1757 
 λ2 1.0052 0.5614 0.1609 

 λ3 0.9803 0.5438 0.1647 

1% noise λ1 0.9081 0.5124 0.1616 
 λ2 0.9511 0.5387 0.1436 

 λ3 0.9266 0.5213 0.1483 

 

where (λ1, λ2) are the unknown parameters. Let u denote the real part of h and v the imaginary part. Then, the nonlinear 

Schrödinger equation can be equivalently written as 

ut  + λ1 vxx + λ2(u2 + v2)v = 0, (11) 

vt − λ1uxx − λ2(u2 + v2)u = 0. 

Employing the backward Euler time stepping scheme, we obtain 

un  + ∆tλ1 vn
 

vn  − ∆tλ1un
 

+ ∆tλ2[(un)2 + (vn)2]vn  = un−1, (12) 

— ∆tλ2[(un)2 + (vn)2]un = vn−1. 

The above equations can be approximated by 

un  + ∆tλ1 vn
 

vn  − ∆tλ1un
 

+ ∆tλ2[(un−1)2 + (vn−1)2]vn  = un−1, (13) 

— ∆tλ2[(un−1)2 + (vn−1)2]un = vn−1, 

which involves only linear operations. Here, un−1 (x) and  vn−1(x) are the real and imaginary parts of the state of the system 

at the previous time step, respectively. We proceed by placing two independent Gaussian processes on un(x) and vn(x); i.e., 

un(x) ∼ GP(0, ku(x, xr; θu)), (14) 

vn(x) ∼ GP(0, kv(x, xr; θv )). 

Here, θu and θv are the hyper-parameters of the kernels ku and kv , respectively.  The  prior  assumptions  (14)  along  with 

equations (13) enable us to encode the underlying laws of physics expressed by the nonlinear Schrödinger equation in the 

resulting hidden physics model 

⎡  
un   

⎤  
 

 

⎛    ⎡  

kn,n 

 

 

kn,n 

 
 

kn,n−1 
n,n−1  

⎤ ⎞
 

 

v ⎥  ⎜ 
n,n 

kn,n kn,n−1 

n,n−1 

un−1 
⎥
⎦  ∼ GP ⎜0, ⎢ kn−1,n      kn−1,n      kn−1,n−1      kn−1,n−1 ⎥ ⎟ 

 

The specific  forms  of  the  covariance  functions  involved  in  model  (15)  is  a  direct  function  of  the  prior  assumptions  (14) 

as well as equations (13). It is worth emphasizing that although we start with independent  priors  in  equations  (14),  the 

resulting physics informed priors in equation (15) are fully correlated. The hyper-parameters θu and θv along  with  the 

parameters λ1 and  λ2  are learned by minimizing the negative log marginal likelihood as outlined in section  4. The original data-

set proposed in [2] contains 501 time snapshots of a solution to  the  nonlinear  Schrödinger  equation  with  a  Gaussian initial 

condition. The snapshots  are  ∆t  0.0063  apart.  The  spatial  discretization  of  each  snapshot  involves  a  uniform  grid with 512 

elements. As depicted in Fig. 4 using only two of these snapshots (randomly selected) with 49 and 51 data points, respectively, the 

algorithm is capable of identifying the correct parameter values up to a relatively good accuracy. It should be noted that we 

are using only 100   49    51 data points out of a total of 256512    501    512 in the original data set. Such a performance is 

achieved at the cost of explicitly encoding the underlying physical laws expressed by the nonlinear Schrödinger equation in the 

covariance functions of the hidden physics model (15). For a systematic study of the performance of the  method,  let us carry  

out the  same  experiment  as the  one  illustrated in Fig.  4  for  every  pair  of consecutive  snapshots in the original dataset. We 

are  still  using  the  same  number  of  data  points  (i.e.,  49  and  51)  for  each  pair  of  snapshots. The resulting statistics for the 

learned parameter values are reported  in  Table  7.  As  is  clearly  demonstrated  in  this  table, more noise in the data leads to less 

confidence in the estimated values for the parameters. Moreover, let us recall the main assumption of this work that the gap ∆t 

between the pair of snapshots should be small enough so that we can employ the backward Euler scheme (see equation (12)). 

To test the importance of this assumption, let us use the exact same setup as the one explained in Fig. 4, but increase ∆t. 

The results are reported in Table 8. Therefore, the most important facts about the proposed methodology are that more data, 

less noise, and a smaller gap ∆t between the two snapshots enhance the performance of the algorithm. 

v,v 
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Fig. 4. Nonlinear Schrödinger equation: A solution to the nonlinear Schrödinger equation is depicted in the top two panels. The two black vertical lines in 

these two panels specify the locations of the two randomly selected snapshots. These two snapshots are ∆t 0.0063 apart and are plotted in the two 

middle panels. The red crosses denote the locations of the training data points. The correct partial differential equation along with the identified ones are 

reported in the lower panel. Here, u is the real part of h and v is the imaginary part. (For interpretation of the references to color in this figure, the reader 

is referred to the web version of this article.) 

 
Table 7 

Nonlinear Schrödinger equation: Resulting statistics for the learned parameter values. 

 
 
 

 
0.4259 

Third quartile 0.5072 1.0039 0.5918 1.0670 0.9730 1.2730 

Table 8 

Nonlinear Schrödinger equation: Effect of increasing the gap ∆t between the pair of snapshots. 
 

∆t = 0.0063 ∆t = 0.0628 ∆t = 0.1257 ∆t = 0.1885 

Clean data λ1 0.5062 0.4981 0.3887 0.3097 

 λ2 0.9949 0.8987 0.7936 0.7221 

1% noise λ1 0.4758 0.4976 0.3928 0.3128 

 λ2 0.9992 0.9011 0.7975 0.7255 

 Clean data   1% noise   5% noise   

λ1 λ2  λ1 λ2  λ1 λ2 

First quartile 

Median 

0.4950 
0.5009 

0.9960 
1.0001 

 0.3714 
0.4713 

0.9250 
0.9946 

 
−0.1186 0.6993 

0.9651 
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 Navier–Stokes equations 

 
Navier–Stokes equations describe the physics of  many  phenomena  of  scientific  and  engineering  interest.  They  may  be 

used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes equations in 

their full and simplified forms help with the design of aircraft and cars, the study of blood flow, the design of power stations, 

the analysis of the dispersion of pollutants, and many other applications. Let us consider the Navier–Stokes equations in two 

dimensions7 (2D) given explicitly by 

ut  + λ1(uux  + vuy) = −px  + λ2(uxx  + uyy ), 

vt  + λ1(uvx  + vv y)  = −py + λ2(vxx  + vyy ), 

 
(16) 

where u(t, x, y) denotes the x-component of the velocity field, v(t, x, y) the y-component, and p(t, x, y) the pressure. Here, 

λ  (λ1, λ2) are the unknown parameters. In particular, λ2  corresponds to the inverse of the Reynolds number. Solutions to 

the Navier–Stokes equations are searched in the set of divergence-free functions; i.e., 

ux + vy = 0. (17) 

This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid. 

Applying the backward Euler time stepping scheme to the Navier–Stokes equations (16) we obtain 

un + ∆tλ1(unun + vnun ) + ∆tpn − ∆tλ2(un
 + un

 ) = un−1, 
x y x xx yy  (18) 

vn  + ∆tλ1(un vn  + vn vn ) + ∆tpn   − ∆tλ2(vn
 + vn

 ) = vn−1, 

where un(x, y) = u(tn, x, y) and vn(x, y) = v(tn, x, y). We make the assumption that 

un  = ψn,    vn  = −ψn, (19) 

for some latent function ψn(x, y). Under this assumption, the continuity equation (17) will be automatically satisfied. We 

proceed by placing a Gaussian process prior on 

ψn(x, y) ∼ GP   0, k((x, y), (xr, yr); θ )  , (20) 

where  θ  are  the  hyper-parameters  of  the  kernel  k((x, y), (xr, yr)  θ ).  This  will  result  in  the  following  multi-output  Gaussian 

process 

un 

vn 

where 

∼ GP    0, 

n,n 
u,u 
n,n 
v,u 

n,n 
u,v 
n,n 
v,v 

 
, (21) 
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∂
 

∂ 
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∂ y ∂ yr 
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∂ y ∂xr 

kn,n ∂   ∂ n,n ∂ 
∂  

k. 
v,u ∂x ∂ yr 

v,v 
 

∂x ∂xr 

By construction (see equation (19)), any samples generated from this multi-output Gaussian process will satisfy the conti- 

nuity equation8 (17). Moreover, independent from ψn(x, y), we will place a Gaussian process prior on pn(x, y); i.e., 

pn(x, y) ∼ GP(0, kn,n ((x, y), (xr, yr); θp)). (22) 

We linearize the backward Euler time stepping scheme by employing the states un−1(x, y) and vn−1(x, y) of the system at 

the previous time step and writing 

un  + ∆tλ1(un−1un  + vn−1un ) + ∆tpn  − ∆tλ2(un
 + un

 ) = un−1, 
x y x xx yy  (23) 

vn + ∆tλ2(un−1 vn  + vn−1 vn ) + ∆tpn  − ∆tλ2(vn
 + vn

 ) = vn−1. 

The above equations (23) can be rewritten as 

λ 
(x,y) 
λ 
(x,y) 

un + ∆tpn = un−1, 

vn + ∆tpn = vn−1, 

 
(24) 

 
 

 

7    It is straightforward to generalize the proposed framework to the Navier–Stokes equations in three dimensions (3D). 
8    The continuity in the three-dimensional case can be satisfied by using un ψn and placing a multi-output Gaussian process prior on the vector 

valued latent function ψn. 
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by defining the linear operator Lλ
 to be given by 

L(x,y) h := h + ∆tλ1(un−1hx + vn−1hy) − ∆tλ2(hxx + hyy ). (25) 

This will allow us to obtain the  following  hidden  physics  model  encoding  the  structure  of  the  Navier–Stokes  equations  and 

the backward Euler time stepping scheme in its kernels; i.e., 

 
un 
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The lower triangular portion of the matrix of covariance functions (26) is not shown due to symmetry. It is worth emphasiz- 

ing that although we start with independent priors for the pressure pn(x, y) and the stream function ψn(x, y), the resulting 

physics informed priors in equation (26) are fully correlated. The hyper-parameters θ and θp along with the parameters 

λ  (λ1, λ2) are learned by minimizing the negative log marginal likelihood as outlined in section 4. As for the data, follow- 

ing the exact same instructions as the ones provided in [62] and [2], we simulate the Navier–Stokes equations describing 

the two-dimensional fluid flow past a circular cylinder at Reynolds number 100 using the Immersed Boundary Projection 

Method [63,64]. This approach utilizes a multi-domain scheme with four nested domains, each successive grid being twice 

as large as the previous one. Length and time are nondimensionalized so that the cylinder has unit diameter and the  flow 

has unit velocity. Data is collected on the finest domain with dimensions 9   4 at a grid resolution of 449   199. The flow 

solver uses a 3rd-order Runge Kutta integration scheme with a time step of t 0.02, which has been verified to yield well-

resolved and converged flow fields. After simulations converge to steady periodic vortex shedding, flow snapshots are saved 

every ∆t 0.02. As depicted in Fig. 5 using only two snapshots of the velocity9 field with 251 and 249 data points, respectively, 

the algorithm is capable of identifying the correct parameter values up to a relatively good accuracy. It should be noted that 

we are using only two snapshots with a total of 500   251    249 data points. This surprising performance is achieved at 

the cost of explicitly encoding the underlying physical laws expressed by the Navier–Stokes equations in the covariance 

functions of the hidden physics model (26). For a sensitivity analysis of the reported results, let us perform the same 

experiment as the one illustrated in Fig. 5 for 501 pairs of consecutive snapshots. We are still using the same num- ber of 

data points (i.e., 251 and 249) for each pair of snapshots. The resulting statistics for the learned parameter values are 

reported in Table 9. As is clearly demonstrated in this table, more noise in the data leads to less confidence in the estimated 

values for the parameters. Moreover, to test the sensitivity of the results with respect to the gap between two time 

snapshots, let us use the exact same setup as the one explained in Fig. 5, but increase ∆t. The results are reported in Table 

10. These results verify the most important facts about the proposed methodology that more data, less noise, and a smaller 

gap ∆t between the two snapshots enhance the performance of the algorithm. In particular, the results reported in Table 10 

indicate that to obtain more accurate estimates of the Reynolds number 1/λ2 one needs to utilize a smaller gap 
∆t  between the pair of snapshots. To verify the validity of this conjecture let us decrease the gap ∆t  between the pair of 

time snapshots while employing the exact same setup as the one explained in Fig. 5. The results are reported in Table 11. 

 
9 It is worth emphasizing that we are not making use of any data on the pressure or vorticity fields. In practice, unlike veloci ty (e.g., Particle Image 

Velocimetry (PIV) data), obtaining direct measurements of the pressure or vorticity fields are more demanding if not impossible. Our method circumvents 

the need for having data on the pressure simply because of the prior assumption (21) where  any samples  generated  from  this  multi-output  Gaussian 

process satisfy the continuity equation (17). 
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Fig. 5. Navier–Stokes equations: A single snapshot of the vorticity field of a solution to the Navier–Stokes equations for the fluid flow past a cylinder is 

depicted in the top panel. The black box in this panel specifies the sampling region. Two snapshots of the velocity field being ∆t   0.02 apart are plotted 

in the two middle panels. The black crosses denote the locations of the training data points. The correct  partial  differential  equation  along  with  the 

identified ones are reported in the lower panel. Here, u  denotes the  x-component of the velocity field,  v  the  y-component,  p  the pressure, and  w  the 

vorticity field. 

 
 

As is clearly demonstrated in this table, a smaller  ∆t  leads to more accurate estimates of the Reynolds number  1/λ2  in the 

absence of noise in the data. However, a smaller ∆t seems to make the algorithm more susceptible to noise in the data. 

 

 
Table 9 

Navier–Stokes equations: Resulting statistics for the learned parameter values. 
 

 Clean data   1% noise   5% noise   

λ1 λ2  λ1 λ2  λ1 λ2 

First quartile 0.9854 0.0069  0.8323 0.0057  0.5373 0.0026  

Median 0.9928 0.0077  0.8717 0.0063  0.6498 0.0030  

Third quartile 1.0001 0.0086  0.9102 0.0070  0.7619 0.0046  
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erator with symbol |w|α . In other words, the Fourier transform of (−∇α )u(x) is given by |w|αu(w). The fractional Laplacian 

 

Table 10 

Navier–Stokes equations: Effect of increasing the gap ∆t between the pair of snapshots. 
 

∆t = 0.02 ∆t = 0.04 ∆t = 0.06 ∆t = 0.08 ∆t = 1.0 

Clean data λ1 0.9834 0.9925 0.9955 0.9976 1.0021 

 λ2 0.0083 0.0072 0.0058 0.0040 0.0027 

1% noise λ1 0.8488 0.9298 0.9597 0.9726 0.9791 

 λ2 0.0140 0.0110 0.0088 0.0069 0.0053 

 
 

Table 11 

Navier–Stokes equations: Effect of decreasing the gap ∆t between the pair of snapshots. 
 

∆t = 0.02 ∆t = 0.01 ∆t = 0.005 

Clean data λ1 0.9834 0.9688 0.9406 

 λ2 0.0083 0.0091 0.0104 

1% noise λ1 0.8488 0.7384 0.6107 

 λ2 0.0140 0.0159 0.0217 

 

 Fractional equations 

 
Let us consider the one dimensional fractional equation 

ut − λ1D
λ2 u = 0, (27) 

where  (λ1, λ2) are the unknown parameters. In particular,  λ2  is the fractional order of the operator  D
λ2 that is defined 

in the Riemann–Liouville sense [65]. Fractional operators often arise in modeling anomalous diffusion processes and other non-

local interactions. Integer values such as λ2 = 1 and λ2 = 2 can model classical advection and diffusion phenomena, respectively. 

However, under the fractional calculus setting, λ2 can assume real values  and  thus  continuously  interpolate between inherently 

different model behaviors. The proposed framework allows λ2 to be directly inferred from noisy data, 

and opens the path to a flexible formalism for model discovery and calibration. Applying the backward Euler time stepping 

scheme to equation (27) we obtain 

un − ∆tλ1D
λ2 un = un−1. (28) 

Here, un(x) = u(tn, x) is the hidden state of the system at time tn. We make the prior assumption that 

un(x) ∼ GP(0, k(x, xr; θ )). (29) 

The prior assumption (29) along with the backward Euler scheme (28) allow us to obtain the following hidden physics model 

corresponding to the fractional equation (27); i.e., 

    
un      

   

∼

  

0  

      
kn,n kn,n−1  

(30) 
 

The only technicality induced by fractional operators has to do with deriving the kernels kn,n−1 , kn−1,n , and kn−1,n−1 . Here, 

kn,n−1(x, xr; θ, λ1, λ2) was obtained by taking the inverse Fourier transform [65] of 

[1 − ∆tλ1(−iw r)λ2 ]k(w, w r; θ ), 

where k(w, wr; θ) is the Fourier transform of the kernel k(x, xr; θ). Similarly, one can obtain kn−1,n and kn−1,n−1 . The hyper- 

parameters θ along with the parameters λ1 and λ2  are learned by minimizing the negative log marginal likelihood as 

outlined in section 4. We use the hidden physics model (30) to identify the long celebrated relation between Brownian 

motion and the diffusion equation [2]. The Fokker–Planck equation for a Brownian  motion  with  x(t + ∆t) ∼ (x(t), dt), 

associated with a particle’s position, is ut 0.5uxx. We simulated a Brownian motion at evenly spaced time points and gen- 

erated two histograms of the particle’s displacement. These two histograms are ∆t 0.01 apart. As depicted in Fig. 6 using 

only two histograms with 100 bins for each one, the algorithm is capable of identifying the correct fractional order and 

parameter values up to a relatively good accuracy. Moreover, let us now consider the one dimensional fractional equation 

ut + (−∇α )u = 0, (31) 

where α is the unknown parameter and (−∇α ) is the fractional Laplacian operator [65]. The fractional Laplacian is the op- 
x ˆ 

GP . 



IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 30th June, 2019 

288 

 

= 

 

 
 

Fig. 6. Fractional Equation – Brownian Motion: A single realization of a Brownian motion is depicted in the top panel. Two histograms of the particle’s  

displacement, being ∆t   0.01 apart, are plotted in the middle panel. The correct partial differential equation along with the identified ones are reported 

in the lower panel. 

 
operator can also be defined as the generator of α-stable10 Lévy processes. Motivated by this observation, we simulated an α-
stable Lévy process [67,68] and employed the hidden physics model resulting from equation (31)  to identify the fractional order 

α. As depicted in Fig. 7 using only two histograms with 100 bins for each one, the algorithm is capable of identifying the 
correct fractional order up to a relatively good accuracy. 

 
6. Summary and discussion 

 
We have introduced a structured learning machine which is explicitly informed by the underlying physics that possibly 

generated the observed data. Exploiting this structure is critical for constructing data-efficient learning algorithms that can 

effectively  distill  information  in  the  data-scarce  scenarios  appearing  routinely  when  we  study  complex  physical  systems. 

We applied the proposed framework to the  problem  of  identifying  general  parametric  nonlinear  partial  differential  equa- 

tions from noisy data. This generality was demonstrated using various  benchmark  problems  with  different  attributes.  This 

work should be considered a direct follow up on [1] in which a similar methodology was employed to infer solutions to time-

dependent and nonlinear partial differential equations, and effectively quantify and propagate uncertainty due to noisy initial 

or boundary data. The ideas introduced in these two papers provide a natural platform for learning from noisy data and 

computing under uncertainty. Perhaps the  most  pressing  limitation  of  this  work  in  its  present  form  stems  from  the cubic 

scaling with respect to the  total  number  of  training  data  points.  However,  ideas  such  as  recursive  Kalman  updates [69], 

variational inference [55], and parametric Gaussian processes [56] can be used to address this limitation. 

Moreover, the examples studied in the current work were inspired by the pioneering work recently presented in [2]. The 

authors of [2] followed a sparse regression approach and a full set of spatio-temporal time series measurements consisting of 

thousands of data points. In contrast, here we used much smaller datasets with only hundreds of points and two snapshots 

of the systems. However, unlike the work in  [2],  here  we  did  not  use  a  dictionary  of  all  possible  terms  involved  in  the 

partial differential equation. We  could  possibly  include  such  a  dictionary  in  our  formulation  but  that  would  make  our 

kernel evaluations more expensive. Moreover,  in  some  systems,  e.g.,  in  an  advection–diffusion–reaction  system  we  know 

most of the terms of the equation, i.e., advection and diffusion but typically the reaction term is unknown. In this case, we 

would seek to obtain the parameters in  front  of  the  advection–diffusion  and  discover  the  functional  form  of  the  reaction 

term along with any parameters using the methodology outline in this paper. In  comparison  to  [2],  our  method  does  not 

require numerical differentiation as the kernels are obtained analytically. Moreover, we do not require a regular lattice as in 

[2] and can work with scattered data. An additional advantage of our approach is that it can estimate parameters appearing 

anywhere  in  the  formulation  of  the  partial  differential  equation  while  the  method  of  [2]  is  only  suitable  for  parameters 

 
10  Stable distributions [66] are a rich class of probability distributions that allow skewness and heavy tails. Stable distributions have been proposed as a 

model for many types of physical and economic systems. In particular, it is argued that some observed quantities are the sum of many small terms – the 

price of a stock, the noise in a communication system, etc. – and hence a stable model should be used to describe such systems. 
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Fig. 7. Fractional Equation – α-stable Lévy process: A single realization of an α-stable Lévy process is depicted in the top panel. Two histograms of the particle’s 

displacement, being ∆t   0.01 apart, are plotted in the middle panel. The correct partial differential equation along with the identified ones are reported 

in the lower panel. 

 
appearing as coefficients. For example, they cannot estimate the fractional  order  in  the  last  example  we  presented  in  our 

paper or the parameters  of  partial  differential  equations  (e.g.,  the  sine-Gordon  equation)  involving  a  term  like  sin(λu(x)) 

with λ being the parameter. Also, the treatment of the noise is somewhat complex in the method of [2] as it involves some 

sort of filtering via e.g., singular value decomposition whereas our method can filter arbitrarily noisy data automatically via 

the Gaussian process prior assumptions. We believe that both methods can be used in different contexts effectively and we 

anticipate that this is  only  the  beginning  of  a  new  way  of  thinking  and  formulating  new  and  possibly  simpler  equations, 

e.g., by employing fractional operators that are naturally  captured in our  framework.  Furthermore,  an interesting  example 

would be to apply the learning process put  forth  in  the  current  work  on  one  of  the  turbulence  models  (e.g.,  k-epsilon)  to 

find the model parameters. Here, the proposed method can easily incorporate problems with  time  dependent  parameters 

through time stepping while the space dependent parameters can be expanded in a basis and the coefficients of  such  an 

expansion can be learned through minimizing the negative log marginal likelihood. 
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